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A “prime factor” Fast Fourier Transform algorithm is described which is self-sorting and 
computes the transform in place. With a view to implementation on a Cray-1 or Cyber 205, 
the form of the algorithm is chosen to minimize the number of additions. With an appropriate 
choice of index mapping in the derivation, we obtain the unexpected result that the required 
indexing is actually simpler than that for a conventional FFT. The construction of the 
necessary “rotated” DFT modules is described, and comparisons are presented between the 
new algorithm and the conventional FFT in terms of operation counts and timings on an 
IBM 3081; on this machine, the new transform algorithm takes about 60% of the time for the 
conventional FFT. A Fortran routine for the new algorithm is outlined. 0 1985 Academic Press, 

Inc 

1. INTRODUCTION 

In a recent review paper [ 163, the author developed a unified derivation of the 
numerous forms of the “conventional” Fast Fourier Transform (FFT) algorithm 
introduced by Cooley and Tukey [3]. Special emphasis was placed on self-sorting 
variants for which both the input and the output are naturally ordered, the only 
penalty being the need for a work array of the same size as the data array. 
Derivations were also given of four forms of the algorithm which require a per- 
mutation of the data either before or after the transform: the variants of Cooley and 
Tukey [3] and Gentleman and Sande [4] which compute the transform in place, 
and the Pease [ 131 and “transposed Pease” forms which require a work array but 
have a simpler structure. The implementation of the conventional FFT algorithm 
on vector computers such as the Cray-1 and the Cyber 205 was also discussed in 
C161. 

In a second paper [17], consideration was given to the implementation on these 
machines of the so-called “prime factor” algorithm (PFA) first introduced by Good 
[S], and subsequently developed by Kolba and Parks [lo] and especially by 
Winograd [19]; further discussion of these algorithms can be found in the recent 
books of McClellan and Rader [ 1 l] and Nussbaumer [ 121. The important charac- 
teristic of the Cray-1 and the Cyber 205 in this context is not that they are vector 
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machines, but that additions and multiplications can be performed simultaneously. 
It was shown in [173 that the best strategy would be to minimize the number of 
additions, and that this would be achieved by using Good’s algorithm with the 
“small-n” transforms computed in a rather conventional manner rather than by the 
small-n transforms of Winograd [19] which minimize the number of mul- 
tiplications. As the potential gain seemed to be very modest, and since at first sight 
the prime factor algorithms appear to require very complicated indexing, the idea of 
implementing these algorithms on the Cray-1 and Cyber 205 was not pursued 
further. 

Johnson and Burrus [S] have recently taken the development of the prime factor 
algorithms further by constructing combinations of Good’s and Winograd’s 
algorithms which minimize a cost function which the user can specify, but their 
algorithms still require more additions than the basic prime factor algorithm 
advocated in [ 171. 

Shortly after submitting [17] for publication, the author came across a paper by 
Burrus and Eschenbacher [2] in which it was shown that the prime factor FFT 
algorithm can be implemented in such a way that it is both self-sorting and 
in-place. In view of this very useful property, the use of the prime factor algorithm 
on vector computers deserves reconsideration, since it offers the prospect of 
economies in both time and storage. 

In fact, the versions of the prime factor algorithm given most attention in [2] 
were in-place but not self-sorting. The authors also showed how to construct a 
variant which would be self-sorting as well as in-place, but suggested that an 
efficient implementation might require special coding for each value of N, the length 
of the transform. Rothweiler [ 143 presented an indexing scheme for the algorithm 
which permitted its use for general N (the only restriction being, as in all prime fac- 
tor FFT algorithms, that N can be decomposed into mutually prime factors Ni such 
that an explicit algorithm is available for a DFT (discrete Fourier transform) of 
length Ni). 

In this paper we develop a version of the algorithm similar in spirit to that 
described by Rothweiler [14], but with three important differences. First, a dif- 
ferent index mapping is used to convert a one-dimensional transform of length N 
into a k-dimensional transform of size N, x N2 x .** x Nk, where N = N, N,... N,. 
Second, the short transforms of length Ni are carried out using algorithms which 
minimize the number of additions, as recommended in [17]. Third, the internal 
indexing permutations are performed quite differently. The resulting algorithm has 
a simpler indexing structure than those presented in [2] and [ 14); rather 
remarkably, it is actually simpler than that required for the conventional FFT 
algorithms in [16]. 

The rest of this paper is organized as follows. In Section 2 we show how the 
prime factor FFT algorithm is derived. Section 3 discusses the choice of index map- 
pings. Section 4 is concerned with the construction of the “rotated DFT modules” 
which form an essential part of the algorithm described here. In Section 5 we 
present operation counts and timing comparisons between the conventional and 



SELF-SORTING IN-PLACE FFT 285 

prime factor algorithms implemented on a scalar computer (IBM 3081). Finally, 
Section 6 contains a summary and suggestions for further work. A Fortran sub- 
routine which implements the proposed algorithm is outlined in the Appendix. 

2. DERIVATION OF THE PFA 

Burrus [ 1,2] has presented a thorough derivation of the prime factor FFT 
algorithm. For the sake of completeness, we repeat the essentials here. 

The discrete Fourier transform (DFT) is defined by 

N-l 

x(n)= c c(k)ok,“, O<n<N-1 
k=O 

(1) 

where we use the notation 

w,,, = exp(2infN). (2) 

Since o: = 1, the indices n, k, in Eq. (1) may be interpreted modulo N (i.e., x and c 
may both be regarded as periodic with period N). For compactness we will use the 
notation 

(x),=xmodulo N. (3) 

In [2] and [14], oN is defined to be exp( -2ix/N), but this requires only minor 
changes in the derivation; we use Eq. (2) here to be consistent with the notation in 
Cl0 

The first idea used in deriving the PFA (which can also be used to derive the 
conventional FFT) is that of mapping the one-dimensional arrays x, c into mul- 
ti-dimensional arrays. For simplicity we consider the case N = Nr NZ. Two possible 
mappings are 

n=N,n,+n, (4) 

and 

n=n,+N,n, (5) 

where 0 < n, < N, - 1, 0 < n, < N, - 1. These mappings are illustrated in Table I for 
N, = 3, Nz = 5. Using either of these maps, we can identify an element x(n) of the 
original array with an element a(n, , nz) of a corresponding two-dimensional array. 

In deriving the PFA we use the more general index maps: 

k= (K,k,+K&,), (6) 

n = <K3nl + &nz),v (7) 
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TABLE I 

Index Maps for N, = 3, N2 = 5 

n=N,n,+n, 

nl 

n=n,+N,n, 

nl 

where k, and n, run from 0 to N, - 1, and k, and n2 run from 0 to N, - 1. We can 
then map the one-dimensional arrays c(k), x(n) into the corresponding two-dimen- 
sional arrays Qk,, k2), @n,, nz). Burrus [l] gives the conditions under which the 
mappings defined by Eqs. (6) and (7) are unique. 

The second idea used in the PFA comes from an application of the Chinese 
Remainder Theorem [ 111. If N, , N2 are mutually prime (i.e., have no common fac- 
tors) then we can find integers p, q, r, s (0 <p, s < N,, 0 < q, r < N2) such that 

pN,=rN1+ 1 

qN, = sNZ + 1. 

If we use K3 =pN2, K4 = qN1 in Eq. (7), then it is easily verified that 

(8) 

(9) 

n1= (n>,,, n2 = (n>,,. (10) 

This is referred to as the Chinese Remainder Theorem (CRT) mapping. 
Another possibility, referred to as the “Ruritanian” mapping [6], is simply to set 

K, = Nz, K2 = N,. The expression for k in Eq. (6) then becomes 

k= (N,kl+ N,k,)w (11) 

It can be verified that the implied values of k,, k, are 

k, = W),,, k, = <qk),, (12) 

where p, q are defined by Eqs. (8) and (9). 
A third idea which is useful in the PFA is that of a rotated transform. Using the 

notation of [16], let W,,., be the DFT matrix of order N, element (j, k) of W, is 
c$, where the rows and columns of W, are indexed from 0 to N- 1. Equation (1) 
can then be written as 

x = w,c. (13) 
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Now define IV!$l to be the matrix with element (j, k) given by c$, i.e., each 
element of W, is raised to the power r. It can be shown [ 111 that if r is mutually 
prime to N and we compute 

x’ = Wklc (14) 

then x’ can be obtained simply by permuting the elements of x. If 

x = (x0, Xl, x2,..., XN- I IT  (15) 

then 

x’ = (x0, x,, XZr,...)T (16) 

where the subscripts in Eq. (16) are interpreted modulo N. Equation (14) is called a 
rotated DFT. For example, if N= 5 and 

x= WSC=(Xg,X1,X2,X3,Xq)T (17) 

then 

x’ = wy’c = (x0, x2, xq, X,) x3)’ (18) 

as can easily be verified by comparing the explicit forms of W, and Wg’l. 
The following relationship will be useful later: 

wCN- II= w* 
N N (19) 

where the asterisk denotes the complex conjugate. 
Burrus and Eschenbacher [Z] use the Ruritanian map for k and the CRT map 

for n; thus K, = N,, K2 = N, , K3 = pN,, K4 = qN, where p, q are defined by Eqs. (8) 
and (9). It can easily be shown that 

<K,&)N = N,, (K,&),=N, 

and it is obvious (since N, N, = N) that 

<K,&)N= (&K,),=O. 

Substituting the maps of Eqs. (6) and (7) into Eq. (l), we obtain 

(20) 

(21) 

Nz-I h’-1 
J@, , n2) = 1 c Qk,, k,) O~h + &h)(K3n1+ K4nz). 

kZ=O kr=O 
(22) 

Using the results of Eqs. (20) and (21), Eq. (22) reduces to 

Nz-1 N,-I 

f(n,, n2) = 1 1 2(k,, k2) u#klnl w~~~“* 
kz=O k,=O 

(23) 



288 CLIVE TEMPERTON 

and since W? = oN,, oz’ = o,,, this is in the form of a simple N, x N, two-dimen- 
sional DFT: 

N2- 1 N, - I 

qn,, n,)= c 1 E(k,, k,)Wk,ly op. 

k2 = 0 kl=O 1 (24) 

The important difference between Eq. (24) and the conventional FFT is that there 
are no phase (“twiddle”) factors to be applied between the N, transforms of length 
N, and the subsequent N, transforms of length N,. 

If the two-dimensional transform, Eq. (24), is performed in place, then the input 
E(k,, k2) is replaced by the result 9(k,, k2), i.e., the input index map k--t (k,, k2) 
given by Eq. (12) remains intact. Since the derivation of the transform requires a 
different index map for the output n + (n i, nz) as given by Eq. (lo), a reordering or 
unscrambling step is necessary to produce Z(n,, n2), just as in the case of the in- 
place conventional FFT of Gentleman and Sande [4]. Alternatively the input data 
can be scrambled, as in the algorithm of Cooley and Tukey [3], and the transform 
can be performed in place using the output index map throughout. 

To obtain an in-place algorithm which is also self-sorting (i.e., requires no reor- 
dering of the data before or after the transform), a variation of the PFA was 
suggested by Burrus and Eschenbacher [2] and implemented by Rothweiler [14]. 
Suppose we use the Ruritanian map of Eq. (11) for both k and n, i.e., we set 

k= (N,k, +N,k,). (25) 

n=(N,n,+N,n,)N. (26) 

Substituting (25) and (26) in Eq. (l), we obtain 

N2-I /v-l 
a(n,, n2) = 1 1 C(k,, k,) OlyN2kl + Nlh)(N2nl+ Nlm) 

kz=O k,=O 

N2-1 N,-I 

= N~1[Nt’i(k~,k2)~~k,1,]~~:*l12. (27) 
kz = 0 k, =0 

This is in the same form as Eq. (24) except that wN1, UN2 are replaced by ~2, w$. 
Since N,, N, are mutually prime, this simply implies a permutation of the results of 
each of the transforms of length N, or N,; we have rotated the DFT’s as in 
Eq. (14). 

For reasons to be explained in the next section, we choose here instead to use the 
CRT map for both input and output, i.e., 

k= <PN&,+qN,kz), 

n= <pN~nl+qNln2), 

(28) 

(29) 
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where p, q are defined by Eqs. (8) and (9). Substituting (28) and (29) into Eq. (1) 
we obtain 

Q, 3 n2) = NF’ [ Ni ’ E(k,, k2) w$~hw] q$Wwz. (30) 
k2=0 k,=O 

Since the exponents in Eq. (30) can be regarded modulo N, and Nz, respectively, 
they can be simplified. Using Eq. (8) we have 

<pZN2)N, = (P’PN2)N, = (drNl + l))N, =P 

and similarly from Eq. (9) we have (q2N1 )N2 = q. Equation (30) thus becomes 

N,-1 

c t(kl,k2)o+“l 0$“2. 1 kl=O 
(31) 

Equation (31) is similar to Eq. (27), but implies a different permutation of the 
results of the transforms of length N, and N,. Equations (8) and (9) guarantee that 
p is mutually prime to N, and q is mutually prime to N,. 

3. MAPPING AND INDEXING 

We now demonstrate the advantage of using the CRT map instead of the 
Ruritanian map for the in-place self-sorting PFA. Consider the case N, = 3, N, = 5. 
The solution of Eqs. (8) and (9) is p = 2, q = 2, r = 3, s = 1. The Ruritanian map is 
given by 

n = <N,n, +NI%)N (32) 

where n, = (pn)N, = (2n),, n2= (qn)N2= (2n),. The CRT map is given by 

n= (pN2nl +qNln2), 

where n, = (n)N, = (n),, n2= (n),,= (n)5. The two maps are illustrated in 
Table II. 

In the first pass of the two-dimensional transform given by Eq. (27) or Eq. (31), 
we need to perform N2 = 5 (rotated) DFT’s of length N1 = 3. Following a similar 
principle to that used to index the conventional FFT in [16], we set up addresses 
IA, ZB, ZC outside the loop and then perform a computation of the form: 

D010L=1,N2 

[ ;51] =wirl* [;g j 

C Now update IA, ZB, ZC 

10 CONTINUE 
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TABLE II 

Index Maps for N, = 3, N, = 5 

Ruritanian CRT 

0 
1 

n2 2 
3 
4 

where W, is the DFT matrix of order 3, and the output vector can overwrite the 
input vector for in-place computation. 

Referring to the Ruritanian map in Table II, we see that the initial values of IA, 
ZB, ZC are 0, 5, 10, and the code for updating these addresses is of the form 

IA =ZA +3 IA =ZA +3 
ZB=(ZB+3), or ZB=(ZA+5), 
ZC=(ZC+3), ZC=(ZB+5),. 

Either form requires ZB and ZC to be evaluated modulo N, or the insertion of 
equivalent IF statements as in the codes given by Burrus and Eschenbacher [2] 
and Rothweiler [ 141. From the expression for the Ruritanian map in Eq. (32), it is 
clear that the general case is obtained by replacing 3 by N, and 5 by N, in the code 
above (generalized to N, base addresses). 

If on the other hand we use the CRT map in Table II, the initial values of IA, ZB, 
ZC are 0, 10, 5; updating the values for each subsequent transform can be achieved 
simply by the code 

zx=zc+ 1 

ZC=ZB+ 1 
ZB=ZA+l 

ZA=ZX 

requiring no IF statements or address computations modulo N. This code makes 
use of the fact, evident from the CRT map in Table II, that if (n,, nz) corresponds 
to n then ((n, + 1) N,, ( n2 + 1 )& corresponds to n + 1. This is obvious from 
Eq. (lo), and is equivalent to the observation that in the CRT map of Table II, the 
sequence 0, 1, 2 ,..., N - 1 appears along a continuous diagonal if the table is regar- 
ded as periodic in both dimensions. 

In Rothweiler’s implementation of the PFA [14], the permutation within each 
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transform of length Ni is handled by defining a second set of addresses for the out- 
put, e.g., in the case Ni = 3 the code is of the form 

DO1OL=l,Nz 

C update IA, IB, IC 

C update JA, JB, JC 

10 CONTINUE 

The output vector can still overwrite the input vector for in-place computation. 
There are several ways of handling the addressing for JA, JB, JC, but none of them 
is particularly elegant or efficient. 

The approach taken in this paper is to modify the transform algorithms them- 
selves so that they perform the required rotated transforms; the addresses IA, ZB, 
IC in the above example then serve to index both the input vector and the output 
vector. The algorithmic form of the rotated transforms will be discussed in the next 
section. 

Since Eq. (31) can equally well be written as 

N2- 1 

c E(kl,k2)o@~2 f&y, 
1 k2 = 0 

(33) 

it makes no difference to the indexing if we perform the N, transforms of length N, 
before the N, transforms of length N,, rather than vice versa. It follows by induc- 
tion that in the general case the indexing during the transforms of length Ni 
depends only on N/N, and not on the order in which the factors Ni are used. This is 
a further simplification over the case of the conventional FFT [ 163 in which a 
nested loop structure is required to handle the dependence of the indexing on the 
order in which the factors are used. 

4. ROTATED DFT MODULES 

In this section we show how to construct rotated DFT modules by changing the 
multiplier constants in the original modules. This idea is not new; it is briefly 
implied in Winograd’s paper [19], and discussed in some detail by Johnson and 
Burrus [9]. However, in both cases the application is to DFT modules of the form 

WNg= AMB (34) 

where A and B are (generally rectangular) “incidence” matrices with entries + 1, 0, 
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- 1, and all the multiplications are contained in the diagonal matrix M. This form 
is chosen to minimize the number of multiplications. Here, following the recommen- 
dations in [17], we are using DFT modules which minimize the number of 
additions, and which cannot (except in the simplest cases) be written in the form of 
Eq. (34). Nevertheless, the same idea can be applied: the corresponding rotated 
DFT modules can be constructed simply by changing the values of certain con- 
stants which appear in the algorithm. 

We will consider each case in turn. Given the algorithm in [16] to compute 
x = WN,z, we show how to generalize the algorithm to compute the rotated 
transform x’ = Wkl z for any r mutually prime to Nj. 

(a) Ni = 2: Since r must be non-zero and mutually prime to N,, the only 
possibility is the usual case Will; no other rotation is possible. 

(b) N, = 3: For the case r = 1, the algorithm as given in [16] is: 

t,=z,+z,, t,=z,-it,; t, = sin 60 * (z, -z,); 

x,=z,+ t,; x, = t2 + it,; x,=t2--it3. 

The case r = 2 is equivalent to exchanging the output locations of x, and x2. From 
the above expression of the algorithm, this is equivalent to changing the sign of t,, 
and can be achieved simply by replacing the multiplier constant sin 60 by -sin 60. 

(c) Ni= 5: The algorithm can be written 

t,=z,+z,, t,=z,+z,, t,=z,-zz,, t,=z,-zz,, t5=t1+t2; 

t,=c, * (t,-tf2); t,=z,-it,; t,=t,+t,; tq = t, - t,; 

t,, = c2 * t, + c3 * tq; t,,=c,*t3-c2*t4; 

xo=z0+t5; xl=t8+it,,; x2=t9+itll; xj=tg-itll; x,=t,-itI 

where, in the standard case r = 1, we have from [ 163: 

cl=&4; c,=sin72; c,=sin36. 

Possible rotations are given by r = 2, 3,4. The easiest modification is for r = 4; the 
original results emerge in the order 0, 4, 3, 2, 1, and we need to exchange x, with xq 
and x2 with x3. This can be done by changing the signs of tlo and t I,, which is 
achieved by changing c2 to - c2 and c3 to - c~. 

In the case r = 2, the original results emerge in the order 0, 2, 4, 1, 3. This can be 
achieved by exchanging t8 and t,, replacing t,, by t 11 and tll by - t 1o. In turn, this 
can be done by changing the sign of c, , replacing c2 by c3 and c3 by -c2. Similarly 
in the case r = 3, the original results emerge in the order 0, 3, 1, 4, 2: we exchange t8 
and tg, replace t,, by - tl, and t ,1 by t,,, by changing the sign of c,, replacing c2 
by -c3 and c3 by c2. 
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To summarize, the algorithm above computes x = W$‘l z for r = 1,2, 3,4 by 
specifying the following values for the multiplier constants: 

r=l: c,= j’sJ4; c2= sin 12; c3 = sin 36; 

r=2: c,= -34; c2= sin36; c3= -sinl2; 

r=3: cl= -314; c2= -sin36; c3= sin72; 

r=4: c,= G/4; c2 = - sin 72; c3 = - sin 36. 

(d) Nj = 7 (and higher prime values of N,): In the normal unrotated case, it 
was recommended in [17] that the algorithm given by Singleton [lS] be used to 
minimize the number of additions. The complex transform of odd order Nj may be 
written 

xg = x0’ 

x, = x,? + ix,: 

.-I 
1<j<(Ni-1)/2 

(35) 

xN,-j= x,? - lXj 

where 

and 

(N,- 1)/Q 
x,’ =zo+ zk + z/v, ~ k) COS(2jh/Ni) (36) 

(N,- I)/2 
x,’ = ,c, (Zk-zN,-k) sin(2jh/Ni). 

The summations in Eqs. (36) and (37) are computed explicitly, and the whole 
algorithm requires (Nj - 1 )(N, + 3) real additions and (Ni - 1)’ real multiplications. 
It is easily seen how to generalize this algorithm to compute the rotated DFT; for 
any rotation value r, simply replace the angle 0 = 2x/N, which appears in Eqs. (36) 
and (37) by the corresponding angle r0. Any coding designed to implement 
Singleton’s algorithm for general Ni could easily be modified to handle a general 
rotation value r. 

(e) Ni= 9: The algorithm recommended in [17] for this case was simply 
the conventional FFT with Ni factored as 3 x 3. The development of a 
corresponding rotated algorithm leads to a result for the general case Ni =pq. In 
[16] it was shown that 

W,,=(W,xZ,,P~D~(W,xZ,) (38) 

where W,, W, are the DFT matrices of order p, q; Z,, Z, are the corresponding 
identity matrices; P; is a permutation matrix; D; is a diagonal matrix of complex 
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phase (twiddle) factors; and x denotes the Kronecker product. A simple 
modification of the proof given in [ 163 for Eq. (38) shows that 

Wr’ = ( wr x I 
PY 4 

) P(P)‘( Iv” x Z,). 
P 4 4 P (39) 

In other words, the rotated algorithm for the case N, =pq is obtained from the 
original algorithm of Eq. (38) by applying the rotation Y to the short transforms of 
length p and q, and raising the phase factors to the power r. In applying the 
rotation to the short transforms, r may be interpreted modulo p or q as necessary. 
Equation (39) can readily be generalized to the case of more than two factors. 

(f) Nj = 4, 8, 16: The case Nj = 2p has deliberately been left until now, since 
it requires a slightly different technique. Consider the unrotated (r = 1) algorithm 
for N, = 4: 

t, =z,+z,; t,=z,+z,, t,=z,- z2; t,=z,-z,; 

x,=t,+t,, x, = t, + it4; x,=t,-tt,, x3 = t, - it,. 

The only other rotation allowed is r = 3, which interchanges x1 and x3, requiring 
that the sign of t, be changed. One possibility is to insert a multiplier in the 
expresson for t4, which can be set equal to + 1 for r = 1 or - 1 for r = 3. In the con- 
text of FFT algorithms on the Cray-1 or Cyber 205, multiplications are “free” and 
there is no penalty involved [ 171. Alternatively the sign bit of t, could be con- 
trolled by a logical operation, or separate code could be provided for the two cases. 

The rotated modules for N, = 8, 16 can be built up using Eq. (39) and the DFT 
modules for Nj = 2,4. After some rearrangement of the computation, rotated 
modules were constructed which required 6 extra real multiplications (or logical 
operations) in the case N, = 8, and 16 in the case Ni = 16. In either case, the same 
result could be achieved by providing just two separate sequences of code. 

We have now shown how to construct rotated DFT modules for all the values of 
N, normally used in prime factor algorithms. Corresponding modules for Nj a 
power of a prime (e.g., Ni = 25, 27, 32...) can be constructed using Eq. (39), while 
for primes Ni > 7 the same modification of Singleton’s algorithm [ 151 can be used 
as for the case Ni = 7. (However, Johnson and Burrus [7] have constructed DFT 
modules for N, = 13, 17, 19 which require slightly fewer additions and many fewer 
multiplications than Singleton’s algorithm.) 

5. OPERATION COUNTS AND TIMING RESULTS 

Although the prime factor algorithm described in this paper was designed for a 
vector machine such as the Cray-1 or Cyber 205 on which the multiplications are 
essentially free, it seemed appropriate to investigate its properties first on a scalar 
machine (IBM 3081). Since the results were rather interesting, they are reported 
here. 
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A Fortran routine was written to implement the self-sorting in-place PFA for N 
composed of mutually prime factors from the set (2, 3, 4, 5, 7, 8, 9, 16). A shortened 
and simplified version of this routine is given in the Appendix. For comparison pur- 
poses, a self-sorting conventional mixed-radix FFT routine was also written, follow- 
ing the algorithm design in [ 161, with coding for factors 2, 3, 4, 5, 7. Both routines 
were compiled at the highest level of optimization, and timed for numerous values 
of N, suitable for the PFA; the conventional routine was also timed for N = 2p, 
using the radix 4 + 2 formulation. 

Table III first shows the number of real additions and multiplications for a selec- 
tion of values of N, for the conventional FFT and for the PFA. For a given value of 

TABLE III 

Operation Counts and Times for FFT and PFA 

Adds/Mults Time (msec) 

N FFT 

30 4321232 
32 3861132 
35 5721360 
36 5121256 

60 1012/520 
63 11961196 
64 9301324 
70 1352/856 

120 238211276 
126 2768/1840 
128 22421900 
140 3052/1848 

240 536212788 
252 616413928 
256 512212052 
280 694214252 

504 13838/8860 
512 11778/5124 
560 15282/9060 

1008 30194118724 
1024 26114/l 1268 
1260 40892/26680 

1680 54802133892 
2048 58370126628 
2520 89342158396 

4096 126978157348 
5040 191282/121828 

PFA 

372/l 12 

5241264 
4641160 

864j224 
1100/604 

1188/528 

20281508 
245211208 

265611056 

465611256 
540812416 

601212252 

12076/5084 

1342415064 

26612/l 1176 

35104/15104 

46992117432 

7650813 1468 

165616167976 

FFT 

0.64 
0.60 
0.64 
0.67 

1.15 
1.29 
1.06 
1.52 

2.54 
2.99 
2.51 
2.96 

5.22 
5.87 
4.90 
6.57 

13.03 
11.67 
13.73 

26.98 
23.48 
36.55 

49.31 
55.76 
79.75 

113.72 
167.13 

PFA 

0.38 

0.46 
0.41 

0.69 
0.85 

0.96 

1.45 
1.81 

1.92 

3.11 
3.71 

4.09 

8.09 

8.89 

17.32 

23.30 

30.56 

50.50 

108.54 
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N, as noted in [17], use of the PFA reduces the number of additions by typically 
lo%, while the number of multiplications is reduced by more than 50% in some 
cases. (The “extra” multiplications in the rotated DFT modules for Ni = 2p are not 
included in the PFA total; although the routine described here included the extra 
multiplications, they can be avoided as suggested in Section 4.) 

Table III also shows the time taken on the IBM 3081 to perform a transform of 
length N using the FFT and PFA routines. For a given value of N, the time for the 
PFA is typically only 60% of the time for the FFT. More surprisingly, it appears to 
be distinctly advantageous to choose a value of N suitable for the PFA rather than 
a nearby value of the form N = 2p suitable for the FFT, even if the operation count 
for the PFA is slightly higher; compare, for example, the times and operation 
counts for N = 126 (PFA) and N = 128 (FFT). The reason presumably lies in the 
unexpectedly simpler structure of the PFA. 

6. SUMMARY AND PROSPECTS 

We have shown in this paper how to design a self-sorting in-place prime factor 
FFT algorithm which minimizes the number of additions. Contrary to expectations, 
the indexing structure turns out to be simpler than that for the conventional FFT. 
The timing results obtained on an IBM 3081 are very encouraging. 

It is intended that the algorithm be implemented on a Cray-1; since the reduction 
in the number of additions is relatively modest [ 171, the improvement in speed is 
unlikely to be as impressive as on the IBM 3081. Nevertheless, the economy in both 
time and storage will be useful. A further question worth investigating concerns the 
specialization of the algorithm presented here to the case of real/half-complex 
transforms [ 181. 

APPENDIX 

The following routine implements the prime factor algorithm developed in this 
paper; it should be clear how to extend the code to include higher factors. Note that 
to compute x = Wgz rather than x = W,z, one statement has to be added; this 
follows from Eq. (19). 

C SELF-SORTING IN-PLACE PRIME FACTOR FFT ALGORITHM 
C _____---------------------- 

C 
C COMPLEX ARRAY A CONTAINS INPUT AND OUTPUT DATA 
C 
C N = IFAX( 1) * IFAX(2) * ... * IFAX(NFAX) 
C 
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C FOR GREATER EFFICIENCY, USE REAL ARITHMETIC 
C --------------------------------- 

C 
C 

SUBROUTINE PFA(A, N, IFAX, NFAX) 
DIMENSION A(N), IFAX(NFAX) 
COMPLEX A, Tl, T2, T3, T4, I 
DATA SIN60/0.86602540378/, I/(0.0, l.O)/ 

C 
DO loo0 K = 1, NFAX 

C 
IFAC = IFAX 
M = N/IFAC 
DO 100 J= 1, IFAC 
MU=J 
MM=J*M 
IF (MOD(MM, IFAC).EQ. 1) GO TO 110 

100 CONTINUE 
110 CONTINUE 

C 
C MU IS THE REQUIRED ROTATION FOR THE DFT MODULE 
C OF ORDER IFAC. TO IMPLEMENT THE INVERSE 
C TRANSFORM, INSERT THE STATEMENT: 
C MU = IFAC - MU 

NOW COMPUTE THE ADDRESSES IA, IB ETC. AND SELECT 
C THE CODING FOR THE CURRENT FACTOR 
C 

IA=1 
IB=IA+MM 
IF (IFAC. EQ. 2) GO TO 200 
IC=IB+MM 
IF (IC. GT. N)IC=IC-N 
IF (IFAC. EQ. 3) GO TO 300 
ID=IC+MM 
IF (ID. GT. N) ID = ID - N 
IF (IFAC. EQ. 4) GO TO 400 

C 
C CONTINUE THIS SEQUENCE FOR HIGHER FACTORS 
C 
C 
C CODING FOR FACTOR 2 
C --------------- 

581/58/3-2 
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200 

210 

C 
C 
C 

300 

310 

C 
C 
C 

400 

CONTINUE 
DO 210 L= 1, M 
Tl = A(IA) - A(IB) 
A(IA) = A(IA) + A(IB) 
A(IB) = Tl 
IX=IB+ I 
IB=IA+l 
IA=IX 
CONTINUE 
GO TO 1000 

CODING FOR FACTOR 3 

CONTINUE 
23 = SIN60 
IF (MU. EQ. 2) 23 = - 23 
DO 310 L= 1, M 
Tl = A(IB) + A(IC) 
T2 = A(IA) - 0.5 * Tl 
T3 = 23 * (A(IB) - A(IC)) 
A(IA) = A(IA) + Tl 
A(IB)=T2+I*T3 
A(IC)=T2-I*T3 
IX=IC+l 
IC=IB+l 
IB=IA+l 
IA=IX 
CONTINUE 
GO TO 1000 

CODING FOR FACTOR 4 
_----- 

CONTINUE 
24 = 1.0 
IF (MU. EQ. 3) 24 = -24 
DO 410 L = 1, M 
Tl = A(IA) + A(IC) 
T2 = A(IB) + A(ID) 
T3 = A(IA) - A(IC) 
T4 = 24 * (A(IB) - A(ID)) 
A(IA) = Tl + T2 
A(IB)=T3+I*T4 
A(IC) = Tl - T2 
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A(ID)=T3-I*T4 
IX=ID+ 1 
ID=IC+ 1 
IC=IB+ 1 
IB=IA+l 
IA=IX 

410 CONTINUE 
GO TO 1000 

C 
C ADD MORE FACTORS AS REQUIRED 
C 

1000 CONTINUE 
RETURN 
END 
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