
JOURNAL OF COMPUTATIONAL PHYSICS 58, 283-299 (1985)

Implementation of a Self-Sorting In-Place
Prime Factor FFT Algorithm

CLIVE TEMPERTON

Division de recherche en prkvision num&ique,
Service de I’Environnement atmosphkrique, Dorval, Quebec H9P lJ3, Canada

Received February 21, 1984

A “prime factor” Fast Fourier Transform algorithm is described which is self-sorting and
computes the transform in place. With a view to implementation on a Cray-1 or Cyber 205,
the form of the algorithm is chosen to minimize the number of additions. With an appropriate
choice of index mapping in the derivation, we obtain the unexpected result that the required
indexing is actually simpler than that for a conventional FFT. The construction of the
necessary “rotated” DFT modules is described, and comparisons are presented between the
new algorithm and the conventional FFT in terms of operation counts and timings on an
IBM 3081; on this machine, the new transform algorithm takes about 60% of the time for the
conventional FFT. A Fortran routine for the new algorithm is outlined. 0 1985 Academic Press,

Inc

1. INTRODUCTION

In a recent review paper [163, the author developed a unified derivation of the
numerous forms of the “conventional” Fast Fourier Transform (FFT) algorithm
introduced by Cooley and Tukey [3]. Special emphasis was placed on self-sorting
variants for which both the input and the output are naturally ordered, the only
penalty being the need for a work array of the same size as the data array.
Derivations were also given of four forms of the algorithm which require a per-
mutation of the data either before or after the transform: the variants of Cooley and
Tukey [3] and Gentleman and Sande [4] which compute the transform in place,
and the Pease [131 and “transposed Pease” forms which require a work array but
have a simpler structure. The implementation of the conventional FFT algorithm
on vector computers such as the Cray-1 and the Cyber 205 was also discussed in
C161.

In a second paper [17], consideration was given to the implementation on these
machines of the so-called “prime factor” algorithm (PFA) first introduced by Good
[S], and subsequently developed by Kolba and Parks [lo] and especially by
Winograd [19]; further discussion of these algorithms can be found in the recent
books of McClellan and Rader [1 l] and Nussbaumer [121. The important charac-
teristic of the Cray-1 and the Cyber 205 in this context is not that they are vector

283
0021-9991/85 $3.00

Copynghf 0 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

284 CLIVE TEMPERTON

machines, but that additions and multiplications can be performed simultaneously.
It was shown in [173 that the best strategy would be to minimize the number of
additions, and that this would be achieved by using Good’s algorithm with the
“small-n” transforms computed in a rather conventional manner rather than by the
small-n transforms of Winograd [19] which minimize the number of mul-
tiplications. As the potential gain seemed to be very modest, and since at first sight
the prime factor algorithms appear to require very complicated indexing, the idea of
implementing these algorithms on the Cray-1 and Cyber 205 was not pursued
further.

Johnson and Burrus [S] have recently taken the development of the prime factor
algorithms further by constructing combinations of Good’s and Winograd’s
algorithms which minimize a cost function which the user can specify, but their
algorithms still require more additions than the basic prime factor algorithm
advocated in [171.

Shortly after submitting [17] for publication, the author came across a paper by
Burrus and Eschenbacher [2] in which it was shown that the prime factor FFT
algorithm can be implemented in such a way that it is both self-sorting and
in-place. In view of this very useful property, the use of the prime factor algorithm
on vector computers deserves reconsideration, since it offers the prospect of
economies in both time and storage.

In fact, the versions of the prime factor algorithm given most attention in [2]
were in-place but not self-sorting. The authors also showed how to construct a
variant which would be self-sorting as well as in-place, but suggested that an
efficient implementation might require special coding for each value of N, the length
of the transform. Rothweiler [143 presented an indexing scheme for the algorithm
which permitted its use for general N (the only restriction being, as in all prime fac-
tor FFT algorithms, that N can be decomposed into mutually prime factors Ni such
that an explicit algorithm is available for a DFT (discrete Fourier transform) of
length Ni).

In this paper we develop a version of the algorithm similar in spirit to that
described by Rothweiler [14], but with three important differences. First, a dif-
ferent index mapping is used to convert a one-dimensional transform of length N
into a k-dimensional transform of size N, x N2 x .** x Nk, where N = N, N,... N,.
Second, the short transforms of length Ni are carried out using algorithms which
minimize the number of additions, as recommended in [17]. Third, the internal
indexing permutations are performed quite differently. The resulting algorithm has
a simpler indexing structure than those presented in [2] and [14); rather
remarkably, it is actually simpler than that required for the conventional FFT
algorithms in [16].

The rest of this paper is organized as follows. In Section 2 we show how the
prime factor FFT algorithm is derived. Section 3 discusses the choice of index map-
pings. Section 4 is concerned with the construction of the “rotated DFT modules”
which form an essential part of the algorithm described here. In Section 5 we
present operation counts and timing comparisons between the conventional and

SELF-SORTING IN-PLACE FFT 285

prime factor algorithms implemented on a scalar computer (IBM 3081). Finally,
Section 6 contains a summary and suggestions for further work. A Fortran sub-
routine which implements the proposed algorithm is outlined in the Appendix.

2. DERIVATION OF THE PFA

Burrus [1,2] has presented a thorough derivation of the prime factor FFT
algorithm. For the sake of completeness, we repeat the essentials here.

The discrete Fourier transform (DFT) is defined by

N-l

x(n)= c c(k)ok,“, O<n<N-1
k=O

(1)

where we use the notation

w,,, = exp(2infN). (2)

Since o: = 1, the indices n, k, in Eq. (1) may be interpreted modulo N (i.e., x and c
may both be regarded as periodic with period N). For compactness we will use the
notation

(x),=xmodulo N. (3)

In [2] and [14], oN is defined to be exp(-2ix/N), but this requires only minor
changes in the derivation; we use Eq. (2) here to be consistent with the notation in
Cl0

The first idea used in deriving the PFA (which can also be used to derive the
conventional FFT) is that of mapping the one-dimensional arrays x, c into mul-
ti-dimensional arrays. For simplicity we consider the case N = Nr NZ. Two possible
mappings are

n=N,n,+n, (4)

and

n=n,+N,n, (5)

where 0 < n, < N, - 1, 0 < n, < N, - 1. These mappings are illustrated in Table I for
N, = 3, Nz = 5. Using either of these maps, we can identify an element x(n) of the
original array with an element a(n, , nz) of a corresponding two-dimensional array.

In deriving the PFA we use the more general index maps:

k= (K,k,+K&,), (6)

n = <K3nl + &nz),v (7)

286 CLJVE TEMPERTON

TABLE I

Index Maps for N, = 3, N2 = 5

n=N,n,+n,

nl

n=n,+N,n,

nl

where k, and n, run from 0 to N, - 1, and k, and n2 run from 0 to N, - 1. We can
then map the one-dimensional arrays c(k), x(n) into the corresponding two-dimen-
sional arrays Qk,, k2), @n,, nz). Burrus [l] gives the conditions under which the
mappings defined by Eqs. (6) and (7) are unique.

The second idea used in the PFA comes from an application of the Chinese
Remainder Theorem [111. If N, , N2 are mutually prime (i.e., have no common fac-
tors) then we can find integers p, q, r, s (0 <p, s < N,, 0 < q, r < N2) such that

pN,=rN1+ 1

qN, = sNZ + 1.

If we use K3 =pN2, K4 = qN1 in Eq. (7), then it is easily verified that

(8)

(9)

n1= (n>,,, n2 = (n>,,. (10)

This is referred to as the Chinese Remainder Theorem (CRT) mapping.
Another possibility, referred to as the “Ruritanian” mapping [6], is simply to set

K, = Nz, K2 = N,. The expression for k in Eq. (6) then becomes

k= (N,kl+ N,k,)w (11)

It can be verified that the implied values of k,, k, are

k, = W),,, k, = <qk),, (12)

where p, q are defined by Eqs. (8) and (9).
A third idea which is useful in the PFA is that of a rotated transform. Using the

notation of [16], let W,,., be the DFT matrix of order N, element (j, k) of W, is
c$, where the rows and columns of W, are indexed from 0 to N- 1. Equation (1)
can then be written as

x = w,c. (13)

SELF-SORTING IN-PLACE FFT 287

Now define IV!$l to be the matrix with element (j, k) given by c$, i.e., each
element of W, is raised to the power r. It can be shown [111 that if r is mutually
prime to N and we compute

x’ = Wklc (14)

then x’ can be obtained simply by permuting the elements of x. If

x = (x0, Xl, x2,..., XN- I IT (15)

then

x’ = (x0, x,, XZr,...)T (16)

where the subscripts in Eq. (16) are interpreted modulo N. Equation (14) is called a
rotated DFT. For example, if N= 5 and

x= WSC=(Xg,X1,X2,X3,Xq)T (17)

then

x’ = wy’c = (x0, x2, xq, X,) x3)’ (18)

as can easily be verified by comparing the explicit forms of W, and Wg’l.
The following relationship will be useful later:

wCN- II= w*
N N (19)

where the asterisk denotes the complex conjugate.
Burrus and Eschenbacher [Z] use the Ruritanian map for k and the CRT map

for n; thus K, = N,, K2 = N, , K3 = pN,, K4 = qN, where p, q are defined by Eqs. (8)
and (9). It can easily be shown that

<K,&)N = N,, (K,&),=N,

and it is obvious (since N, N, = N) that

<K,&)N= (&K,),=O.

Substituting the maps of Eqs. (6) and (7) into Eq. (l), we obtain

(20)

(21)

Nz-I h’-1
J@, , n2) = 1 c Qk,, k,) O~h + &h)(K3n1+ K4nz).

kZ=O kr=O
(22)

Using the results of Eqs. (20) and (21), Eq. (22) reduces to

Nz-1 N,-I

f(n,, n2) = 1 1 2(k,, k2) u#klnl w~~~“*
kz=O k,=O

(23)

288 CLIVE TEMPERTON

and since W? = oN,, oz’ = o,,, this is in the form of a simple N, x N, two-dimen-
sional DFT:

N2- 1 N, - I

qn,, n,)= c 1 E(k,, k,)Wk,ly op.

k2 = 0 kl=O 1 (24)

The important difference between Eq. (24) and the conventional FFT is that there
are no phase (“twiddle”) factors to be applied between the N, transforms of length
N, and the subsequent N, transforms of length N,.

If the two-dimensional transform, Eq. (24), is performed in place, then the input
E(k,, k2) is replaced by the result 9(k,, k2), i.e., the input index map k--t (k,, k2)
given by Eq. (12) remains intact. Since the derivation of the transform requires a
different index map for the output n + (n i, nz) as given by Eq. (lo), a reordering or
unscrambling step is necessary to produce Z(n,, n2), just as in the case of the in-
place conventional FFT of Gentleman and Sande [4]. Alternatively the input data
can be scrambled, as in the algorithm of Cooley and Tukey [3], and the transform
can be performed in place using the output index map throughout.

To obtain an in-place algorithm which is also self-sorting (i.e., requires no reor-
dering of the data before or after the transform), a variation of the PFA was
suggested by Burrus and Eschenbacher [2] and implemented by Rothweiler [14].
Suppose we use the Ruritanian map of Eq. (11) for both k and n, i.e., we set

k= (N,k, +N,k,). (25)

n=(N,n,+N,n,)N. (26)

Substituting (25) and (26) in Eq. (l), we obtain

N2-I /v-l
a(n,, n2) = 1 1 C(k,, k,) OlyN2kl + Nlh)(N2nl+ Nlm)

kz=O k,=O

N2-1 N,-I

= N~1[Nt’i(k~,k2)~~k,1,]~~:*l12. (27)
kz = 0 k, =0

This is in the same form as Eq. (24) except that wN1, UN2 are replaced by ~2, w$.
Since N,, N, are mutually prime, this simply implies a permutation of the results of
each of the transforms of length N, or N,; we have rotated the DFT’s as in
Eq. (14).

For reasons to be explained in the next section, we choose here instead to use the
CRT map for both input and output, i.e.,

k= <PN&,+qN,kz),

n= <pN~nl+qNln2),

(28)

(29)

SELF-SORTING IN-PLACE FFT 289

where p, q are defined by Eqs. (8) and (9). Substituting (28) and (29) into Eq. (1)
we obtain

Q, 3 n2) = NF’ [Ni ’ E(k,, k2) w$~hw] q$Wwz. (30)
k2=0 k,=O

Since the exponents in Eq. (30) can be regarded modulo N, and Nz, respectively,
they can be simplified. Using Eq. (8) we have

<pZN2)N, = (P’PN2)N, = (drNl + l))N, =P

and similarly from Eq. (9) we have (q2N1)N2 = q. Equation (30) thus becomes

N,-1

c t(kl,k2)o+“l 0$“2. 1 kl=O
(31)

Equation (31) is similar to Eq. (27), but implies a different permutation of the
results of the transforms of length N, and N,. Equations (8) and (9) guarantee that
p is mutually prime to N, and q is mutually prime to N,.

3. MAPPING AND INDEXING

We now demonstrate the advantage of using the CRT map instead of the
Ruritanian map for the in-place self-sorting PFA. Consider the case N, = 3, N, = 5.
The solution of Eqs. (8) and (9) is p = 2, q = 2, r = 3, s = 1. The Ruritanian map is
given by

n = <N,n, +NI%)N (32)

where n, = (pn)N, = (2n),, n2= (qn)N2= (2n),. The CRT map is given by

n= (pN2nl +qNln2),

where n, = (n)N, = (n),, n2= (n),,= (n)5. The two maps are illustrated in
Table II.

In the first pass of the two-dimensional transform given by Eq. (27) or Eq. (31),
we need to perform N2 = 5 (rotated) DFT’s of length N1 = 3. Following a similar
principle to that used to index the conventional FFT in [16], we set up addresses
IA, ZB, ZC outside the loop and then perform a computation of the form:

D010L=1,N2

[;51] =wirl* [;g j

C Now update IA, ZB, ZC

10 CONTINUE

290 CLIVE TEMPERTON

TABLE II

Index Maps for N, = 3, N, = 5

Ruritanian CRT

0
1

n2 2
3
4

where W, is the DFT matrix of order 3, and the output vector can overwrite the
input vector for in-place computation.

Referring to the Ruritanian map in Table II, we see that the initial values of IA,
ZB, ZC are 0, 5, 10, and the code for updating these addresses is of the form

IA =ZA +3 IA =ZA +3
ZB=(ZB+3), or ZB=(ZA+5),
ZC=(ZC+3), ZC=(ZB+5),.

Either form requires ZB and ZC to be evaluated modulo N, or the insertion of
equivalent IF statements as in the codes given by Burrus and Eschenbacher [2]
and Rothweiler [141. From the expression for the Ruritanian map in Eq. (32), it is
clear that the general case is obtained by replacing 3 by N, and 5 by N, in the code
above (generalized to N, base addresses).

If on the other hand we use the CRT map in Table II, the initial values of IA, ZB,
ZC are 0, 10, 5; updating the values for each subsequent transform can be achieved
simply by the code

zx=zc+ 1

ZC=ZB+ 1
ZB=ZA+l

ZA=ZX

requiring no IF statements or address computations modulo N. This code makes
use of the fact, evident from the CRT map in Table II, that if (n,, nz) corresponds
to n then ((n, + 1) N,, (n2 + 1)& corresponds to n + 1. This is obvious from
Eq. (lo), and is equivalent to the observation that in the CRT map of Table II, the
sequence 0, 1, 2 ,..., N - 1 appears along a continuous diagonal if the table is regar-
ded as periodic in both dimensions.

In Rothweiler’s implementation of the PFA [14], the permutation within each

SELF-SORTING IN-PLACE FFT 291

transform of length Ni is handled by defining a second set of addresses for the out-
put, e.g., in the case Ni = 3 the code is of the form

DO1OL=l,Nz

C update IA, IB, IC

C update JA, JB, JC

10 CONTINUE

The output vector can still overwrite the input vector for in-place computation.
There are several ways of handling the addressing for JA, JB, JC, but none of them
is particularly elegant or efficient.

The approach taken in this paper is to modify the transform algorithms them-
selves so that they perform the required rotated transforms; the addresses IA, ZB,
IC in the above example then serve to index both the input vector and the output
vector. The algorithmic form of the rotated transforms will be discussed in the next
section.

Since Eq. (31) can equally well be written as

N2- 1

c E(kl,k2)o@~2 f&y,
1 k2 = 0

(33)

it makes no difference to the indexing if we perform the N, transforms of length N,
before the N, transforms of length N,, rather than vice versa. It follows by induc-
tion that in the general case the indexing during the transforms of length Ni
depends only on N/N, and not on the order in which the factors Ni are used. This is
a further simplification over the case of the conventional FFT [163 in which a
nested loop structure is required to handle the dependence of the indexing on the
order in which the factors are used.

4. ROTATED DFT MODULES

In this section we show how to construct rotated DFT modules by changing the
multiplier constants in the original modules. This idea is not new; it is briefly
implied in Winograd’s paper [19], and discussed in some detail by Johnson and
Burrus [9]. However, in both cases the application is to DFT modules of the form

WNg= AMB (34)

where A and B are (generally rectangular) “incidence” matrices with entries + 1, 0,

292 CLIVE TEMPERTON

- 1, and all the multiplications are contained in the diagonal matrix M. This form
is chosen to minimize the number of multiplications. Here, following the recommen-
dations in [17], we are using DFT modules which minimize the number of
additions, and which cannot (except in the simplest cases) be written in the form of
Eq. (34). Nevertheless, the same idea can be applied: the corresponding rotated
DFT modules can be constructed simply by changing the values of certain con-
stants which appear in the algorithm.

We will consider each case in turn. Given the algorithm in [16] to compute
x = WN,z, we show how to generalize the algorithm to compute the rotated
transform x’ = Wkl z for any r mutually prime to Nj.

(a) Ni = 2: Since r must be non-zero and mutually prime to N,, the only
possibility is the usual case Will; no other rotation is possible.

(b) N, = 3: For the case r = 1, the algorithm as given in [16] is:

t,=z,+z,, t,=z,-it,; t, = sin 60 * (z, -z,);

x,=z,+ t,; x, = t2 + it,; x,=t2--it3.

The case r = 2 is equivalent to exchanging the output locations of x, and x2. From
the above expression of the algorithm, this is equivalent to changing the sign of t,,
and can be achieved simply by replacing the multiplier constant sin 60 by -sin 60.

(c) Ni= 5: The algorithm can be written

t,=z,+z,, t,=z,+z,, t,=z,-zz,, t,=z,-zz,, t5=t1+t2;

t,=c, * (t,-tf2); t,=z,-it,; t,=t,+t,; tq = t, - t,;

t,, = c2 * t, + c3 * tq; t,,=c,*t3-c2*t4;

xo=z0+t5; xl=t8+it,,; x2=t9+itll; xj=tg-itll; x,=t,-itI

where, in the standard case r = 1, we have from [163:

cl=&4; c,=sin72; c,=sin36.

Possible rotations are given by r = 2, 3,4. The easiest modification is for r = 4; the
original results emerge in the order 0, 4, 3, 2, 1, and we need to exchange x, with xq
and x2 with x3. This can be done by changing the signs of tlo and t I,, which is
achieved by changing c2 to - c2 and c3 to - c~.

In the case r = 2, the original results emerge in the order 0, 2, 4, 1, 3. This can be
achieved by exchanging t8 and t,, replacing t,, by t 11 and tll by - t 1o. In turn, this
can be done by changing the sign of c, , replacing c2 by c3 and c3 by -c2. Similarly
in the case r = 3, the original results emerge in the order 0, 3, 1, 4, 2: we exchange t8
and tg, replace t,, by - tl, and t ,1 by t,,, by changing the sign of c,, replacing c2
by -c3 and c3 by c2.

SELF-SORTING IN-PLACE FFT 293

To summarize, the algorithm above computes x = W$‘l z for r = 1,2, 3,4 by
specifying the following values for the multiplier constants:

r=l: c,= j’sJ4; c2= sin 12; c3 = sin 36;

r=2: c,= -34; c2= sin36; c3= -sinl2;

r=3: cl= -314; c2= -sin36; c3= sin72;

r=4: c,= G/4; c2 = - sin 72; c3 = - sin 36.

(d) Nj = 7 (and higher prime values of N,): In the normal unrotated case, it
was recommended in [17] that the algorithm given by Singleton [lS] be used to
minimize the number of additions. The complex transform of odd order Nj may be
written

xg = x0’

x, = x,? + ix,:

.-I
1<j<(Ni-1)/2

(35)

xN,-j= x,? - lXj

where

and

(N,- 1)/Q
x,’ =zo+ zk + z/v, ~ k) COS(2jh/Ni) (36)

(N,- I)/2
x,’ = ,c, (Zk-zN,-k) sin(2jh/Ni).

The summations in Eqs. (36) and (37) are computed explicitly, and the whole
algorithm requires (Nj - 1)(N, + 3) real additions and (Ni - 1)’ real multiplications.
It is easily seen how to generalize this algorithm to compute the rotated DFT; for
any rotation value r, simply replace the angle 0 = 2x/N, which appears in Eqs. (36)
and (37) by the corresponding angle r0. Any coding designed to implement
Singleton’s algorithm for general Ni could easily be modified to handle a general
rotation value r.

(e) Ni= 9: The algorithm recommended in [17] for this case was simply
the conventional FFT with Ni factored as 3 x 3. The development of a
corresponding rotated algorithm leads to a result for the general case Ni =pq. In
[16] it was shown that

W,,=(W,xZ,,P~D~(W,xZ,) (38)

where W,, W, are the DFT matrices of order p, q; Z,, Z, are the corresponding
identity matrices; P; is a permutation matrix; D; is a diagonal matrix of complex

294 CLIVE TEMPERTON

phase (twiddle) factors; and x denotes the Kronecker product. A simple
modification of the proof given in [163 for Eq. (38) shows that

Wr’ = (wr x I
PY 4

) P(P)‘(Iv” x Z,).
P 4 4 P (39)

In other words, the rotated algorithm for the case N, =pq is obtained from the
original algorithm of Eq. (38) by applying the rotation Y to the short transforms of
length p and q, and raising the phase factors to the power r. In applying the
rotation to the short transforms, r may be interpreted modulo p or q as necessary.
Equation (39) can readily be generalized to the case of more than two factors.

(f) Nj = 4, 8, 16: The case Nj = 2p has deliberately been left until now, since
it requires a slightly different technique. Consider the unrotated (r = 1) algorithm
for N, = 4:

t, =z,+z,; t,=z,+z,, t,=z,- z2; t,=z,-z,;

x,=t,+t,, x, = t, + it4; x,=t,-tt,, x3 = t, - it,.

The only other rotation allowed is r = 3, which interchanges x1 and x3, requiring
that the sign of t, be changed. One possibility is to insert a multiplier in the
expresson for t4, which can be set equal to + 1 for r = 1 or - 1 for r = 3. In the con-
text of FFT algorithms on the Cray-1 or Cyber 205, multiplications are “free” and
there is no penalty involved [171. Alternatively the sign bit of t, could be con-
trolled by a logical operation, or separate code could be provided for the two cases.

The rotated modules for N, = 8, 16 can be built up using Eq. (39) and the DFT
modules for Nj = 2,4. After some rearrangement of the computation, rotated
modules were constructed which required 6 extra real multiplications (or logical
operations) in the case N, = 8, and 16 in the case Ni = 16. In either case, the same
result could be achieved by providing just two separate sequences of code.

We have now shown how to construct rotated DFT modules for all the values of
N, normally used in prime factor algorithms. Corresponding modules for Nj a
power of a prime (e.g., Ni = 25, 27, 32...) can be constructed using Eq. (39), while
for primes Ni > 7 the same modification of Singleton’s algorithm [151 can be used
as for the case Ni = 7. (However, Johnson and Burrus [7] have constructed DFT
modules for N, = 13, 17, 19 which require slightly fewer additions and many fewer
multiplications than Singleton’s algorithm.)

5. OPERATION COUNTS AND TIMING RESULTS

Although the prime factor algorithm described in this paper was designed for a
vector machine such as the Cray-1 or Cyber 205 on which the multiplications are
essentially free, it seemed appropriate to investigate its properties first on a scalar
machine (IBM 3081). Since the results were rather interesting, they are reported
here.

SELF-SORTING IN-PLACE FFT 295

A Fortran routine was written to implement the self-sorting in-place PFA for N
composed of mutually prime factors from the set (2, 3, 4, 5, 7, 8, 9, 16). A shortened
and simplified version of this routine is given in the Appendix. For comparison pur-
poses, a self-sorting conventional mixed-radix FFT routine was also written, follow-
ing the algorithm design in [161, with coding for factors 2, 3, 4, 5, 7. Both routines
were compiled at the highest level of optimization, and timed for numerous values
of N, suitable for the PFA; the conventional routine was also timed for N = 2p,
using the radix 4 + 2 formulation.

Table III first shows the number of real additions and multiplications for a selec-
tion of values of N, for the conventional FFT and for the PFA. For a given value of

TABLE III

Operation Counts and Times for FFT and PFA

Adds/Mults Time (msec)

N FFT

30 4321232
32 3861132
35 5721360
36 5121256

60 1012/520
63 11961196
64 9301324
70 1352/856

120 238211276
126 2768/1840
128 22421900
140 3052/1848

240 536212788
252 616413928
256 512212052
280 694214252

504 13838/8860
512 11778/5124
560 15282/9060

1008 30194118724
1024 26114/l 1268
1260 40892/26680

1680 54802133892
2048 58370126628
2520 89342158396

4096 126978157348
5040 191282/121828

PFA

372/l 12

5241264
4641160

864j224
1100/604

1188/528

20281508
245211208

265611056

465611256
540812416

601212252

12076/5084

1342415064

26612/l 1176

35104/15104

46992117432

7650813 1468

165616167976

FFT

0.64
0.60
0.64
0.67

1.15
1.29
1.06
1.52

2.54
2.99
2.51
2.96

5.22
5.87
4.90
6.57

13.03
11.67
13.73

26.98
23.48
36.55

49.31
55.76
79.75

113.72
167.13

PFA

0.38

0.46
0.41

0.69
0.85

0.96

1.45
1.81

1.92

3.11
3.71

4.09

8.09

8.89

17.32

23.30

30.56

50.50

108.54

296 CLIVE TEMPERTON

N, as noted in [17], use of the PFA reduces the number of additions by typically
lo%, while the number of multiplications is reduced by more than 50% in some
cases. (The “extra” multiplications in the rotated DFT modules for Ni = 2p are not
included in the PFA total; although the routine described here included the extra
multiplications, they can be avoided as suggested in Section 4.)

Table III also shows the time taken on the IBM 3081 to perform a transform of
length N using the FFT and PFA routines. For a given value of N, the time for the
PFA is typically only 60% of the time for the FFT. More surprisingly, it appears to
be distinctly advantageous to choose a value of N suitable for the PFA rather than
a nearby value of the form N = 2p suitable for the FFT, even if the operation count
for the PFA is slightly higher; compare, for example, the times and operation
counts for N = 126 (PFA) and N = 128 (FFT). The reason presumably lies in the
unexpectedly simpler structure of the PFA.

6. SUMMARY AND PROSPECTS

We have shown in this paper how to design a self-sorting in-place prime factor
FFT algorithm which minimizes the number of additions. Contrary to expectations,
the indexing structure turns out to be simpler than that for the conventional FFT.
The timing results obtained on an IBM 3081 are very encouraging.

It is intended that the algorithm be implemented on a Cray-1; since the reduction
in the number of additions is relatively modest [171, the improvement in speed is
unlikely to be as impressive as on the IBM 3081. Nevertheless, the economy in both
time and storage will be useful. A further question worth investigating concerns the
specialization of the algorithm presented here to the case of real/half-complex
transforms [181.

APPENDIX

The following routine implements the prime factor algorithm developed in this
paper; it should be clear how to extend the code to include higher factors. Note that
to compute x = Wgz rather than x = W,z, one statement has to be added; this
follows from Eq. (19).

C SELF-SORTING IN-PLACE PRIME FACTOR FFT ALGORITHM
C _____----------------------

C
C COMPLEX ARRAY A CONTAINS INPUT AND OUTPUT DATA
C
C N = IFAX(1) * IFAX(2) * ... * IFAX(NFAX)
C

SELF-SORTING IN-PLACE FFT 297

C FOR GREATER EFFICIENCY, USE REAL ARITHMETIC
C ---------------------------------

C
C

SUBROUTINE PFA(A, N, IFAX, NFAX)
DIMENSION A(N), IFAX(NFAX)
COMPLEX A, Tl, T2, T3, T4, I
DATA SIN60/0.86602540378/, I/(0.0, l.O)/

C
DO loo0 K = 1, NFAX

C
IFAC = IFAX
M = N/IFAC
DO 100 J= 1, IFAC
MU=J
MM=J*M
IF (MOD(MM, IFAC).EQ. 1) GO TO 110

100 CONTINUE
110 CONTINUE

C
C MU IS THE REQUIRED ROTATION FOR THE DFT MODULE
C OF ORDER IFAC. TO IMPLEMENT THE INVERSE
C TRANSFORM, INSERT THE STATEMENT:
C MU = IFAC - MU

NOW COMPUTE THE ADDRESSES IA, IB ETC. AND SELECT
C THE CODING FOR THE CURRENT FACTOR
C

IA=1
IB=IA+MM
IF (IFAC. EQ. 2) GO TO 200
IC=IB+MM
IF (IC. GT. N)IC=IC-N
IF (IFAC. EQ. 3) GO TO 300
ID=IC+MM
IF (ID. GT. N) ID = ID - N
IF (IFAC. EQ. 4) GO TO 400

C
C CONTINUE THIS SEQUENCE FOR HIGHER FACTORS
C
C
C CODING FOR FACTOR 2
C ---------------

581/58/3-2

298 CLIVE TEMPERTON

200

210

C
C
C

300

310

C
C
C

400

CONTINUE
DO 210 L= 1, M
Tl = A(IA) - A(IB)
A(IA) = A(IA) + A(IB)
A(IB) = Tl
IX=IB+ I
IB=IA+l
IA=IX
CONTINUE
GO TO 1000

CODING FOR FACTOR 3

CONTINUE
23 = SIN60
IF (MU. EQ. 2) 23 = - 23
DO 310 L= 1, M
Tl = A(IB) + A(IC)
T2 = A(IA) - 0.5 * Tl
T3 = 23 * (A(IB) - A(IC))
A(IA) = A(IA) + Tl
A(IB)=T2+I*T3
A(IC)=T2-I*T3
IX=IC+l
IC=IB+l
IB=IA+l
IA=IX
CONTINUE
GO TO 1000

CODING FOR FACTOR 4
_-----

CONTINUE
24 = 1.0
IF (MU. EQ. 3) 24 = -24
DO 410 L = 1, M
Tl = A(IA) + A(IC)
T2 = A(IB) + A(ID)
T3 = A(IA) - A(IC)
T4 = 24 * (A(IB) - A(ID))
A(IA) = Tl + T2
A(IB)=T3+I*T4
A(IC) = Tl - T2

SELF-SORTING IN-PLACE FFT 299

A(ID)=T3-I*T4
IX=ID+ 1
ID=IC+ 1
IC=IB+ 1
IB=IA+l
IA=IX

410 CONTINUE
GO TO 1000

C
C ADD MORE FACTORS AS REQUIRED
C

1000 CONTINUE
RETURN
END

ACKNOWLEDGMENTS

Most of this work was performed while the author was with the U. K. Meteorological Office. I am
grateful to Dr. Hal Ritchie of DRPN for his review of the first draft of this paper, and for suggesting
some clarifications.

REFERENCES

1. C. S. BURRUS, IEEE Trans. Acoust. Speech Signal Process. 25 (1977) 239-242.
2. C. S. BURRUS AND P. W. ESCHENBACHER, IEEE Trans. Acoust. Speech Signal Process. 29 (1981),

806817.
3. J. W. COOLEY AND J. W. TUKEY, Math. Comp. 19 (1965), 297-301.
4. W. M. GENTLEMAN AND G. SANDE, Proc. AFIPS Joint Computer Conference 29 (1966), 563-578.
5. I. J. Goon, J. Roy. Statist. Sot. Ser. B 20 (1958), 361-372.
6. I. J. Goon, IEEE Trans. Comput. 20 (1971), 310-317.
7. H. W. JOHNSON AND C. S. BURRUS, “Large DFT Modules: 11, 13, 17, 19 and 25,” Technical Report

No. 8105, Department of Electrical Engineering, Rice University, Houston, Texas, 1981.
8. H. W. JOHNSON AND C. S. BURRUS, IEEE Trans. Acoust. Speech Signal Process. 31 (1983), 378-387.
9. H. W. JOHNSON AND C. S. BURRUS, On the structure of DFT algorithms, submitted to IEEE Trans.

Acoust. Speech Signal Process.
10. D. P. KOLBA AND T. W. PARKS, IEEE Trans. Acoust. Speech Signal Process. 25 (1977), 281-294.
11. J. H. MCCLELLAN AND C. M. RADER, “Number Theory in Digital Signal Processing,” Prentice-Hall,

Englewood Cliffs, N.J., 1979.
12. H. J. NUSSBAUMER, “Fast Fourier Transform and Convolution Algorithms,” 2nd ed., Springer-

Verlag, Berlin, 1982.
13. M. C. PEASE, J. Assoc. Comput. Mach. 15 (1968), 252-264.
14. J. H. ROTHWEILER, IEEE Trans. Acoust. Speech Signal Process. 30 (1982), 105-107.
15. R. C. SINGLETON, IEEE Trans. Audio. Electroacoust. 17 (1969), 93-103.
16. C. TEMPERTON, J. Comput. Phys. 52 (1983), l-23.
17. C. TEMPERTON, J. Comput. Phys. 52 (1983), 198-204.
18. C. TEMPERTON, J. Comput. Phys. 52 (1983), 34G-350.
19. S. WINOGRAD, Math. Comp. 32 (1978), 175-199.

